

CHENGDU HONELINKS INNOVATION TECHNOLOGY CO.,LTD.

501 Kechuang Road, Jinjiang District, Chengdu City, Sichuan Province

TEL: 86-028-86661062 Whatsapp/Cell:86-15196637014 Email: sales@honelinks.com sherry@honelinks.com

Part No.:	SFPL-35B1-20/SFPL-35D1-20					
Description:	·	1.25G SFP Transceiver, BIDITX1310nm/RX1550nm20km 1.25G SFP Transceiver, BIDITX1550nm/RX1310nm20km				
Release Date	Rev. Revision Change Description					
2015/06/07	Α0	New Release				
2020/12/28	A1	Template Update				
2021/03/02	A2	1550nm change from FP to DFB				

Features

- ♦ Up to 1.25Gbps bi-directional data links
- ♦ 1310nm FP laser transmitter and PIN photo detector for
- 1550nm DFB laser transmitter and PIN photo detector for Compliant with SFP MSA and SFF-8472 with singleLC
- ♦ receptacle
- Digital Diagnostic Monitoring: Internal Calibration or External Calibration
- ♦ Compatible with SONET
- ♦ Compatible with RoHS
- ♦ Operating case temperature:
- ♦ Standard : 0 to +70°C♦ Industrial : -40 to +85°C

Application

- ♦ SDH and SONET system
- ♦ Fiber Channel
- ♦ Switch to Switch interface
- ♦ Switched backplane applications
- ♦ Router/Server interface
- ♦ Other optical transmission systems

Standard

- ♦ Gigabit Ethernet
- ♦ Compliant with SFF-8472
- ♦ Switched Backplane Applications
- ♦ Router/Server Interface

Specification

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	0	4	V
Storage Temperature	Ts	-40	+85	°C
Operating Humidity	-	5	85	%

Recommended Operating Conditions

Parameter		Symbol	Min	Typical	Max	Unit
Operating Case Temperature	Standard	To	0		+70	°C
	Industrial	Тс	-40		+85	°C
Power Supply Voltage		Vcc	3.13	3.3	3.47	V
Power Supply Current		Icc			300	mA
Data Rate				1.25		Gbps

Optical and Electrical Characteristics

Parai	meter	Symbol	Min	Typical	Max	Unit	Notes		
Transmitter									
Contro M	Centre Wavelength λ		1290	1310	1330	nm			
Centre w			1530	1550	1570	nm			
Spectral W	/idth (RMS)	Δλ			1	nm			
Average O	utput Power	Pout	-9		-3	dBm	1		
Extincti	on Ratio	ER	8			dB			
-	Optical Rise/Fall Time (20%~80%)				0.16	ns			
Data Input Sw	ring Differential	VIN	400		1800	mV	2		
Input Differen	tial Impedance	Z _{IN}	90	100	110	Ω			
TX Disable	Disable		2.0		Vcc	٧			
I A Disable	Enable		0		0.8	V			
TV Fault	Fault		2.0		Vcc	V			
TX Fault	Normal		0		0.8	V			
	Receiver								
Centre Wavelength		10	1530	1550	1570	nm			
Centre w	aveiengin	λς	1290	1310	1330				
Receiver	Sensitivity				-20	dBm	3		

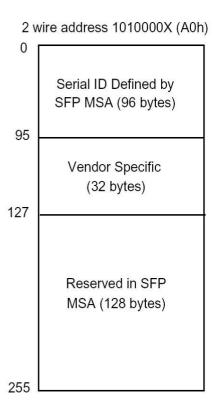
Receiver Overload		-3		dBm	3
LOS De-Assert	LOS _D		-24	dBm	
LOS Assert	LOSA	-35		dBm	
LOS Hysteresis		1	4	dB	
Data Output Swing Differential	Vout	700	900	mV	4
100	High	2.0	Vcc	٧	
LOS	Low		0.8	V	

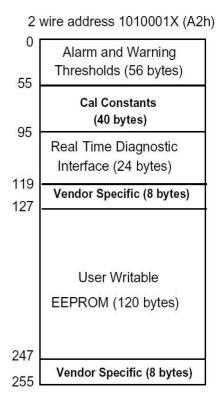
Notes:

- 1. The optical power is launched into SMF.
- 2. PECL input, internally AC-coupled and terminated.
- 3. Measured with a PRBS 2⁷-1 test pattern @1250Mbps, BER ≤1×10⁻¹².
- 4. Internally AC-coupled.

Timing and Electrical

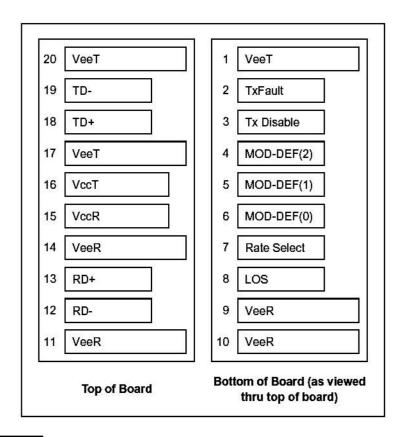
Parameter	Symbol	Min	Typical	Max	Unit
Tx Disable Negate Time	t_on			1	ms
Tx Disable Assert Time	t_off			10	μs
Time To Initialize, including Reset of Tx Fault	t_init			300	ms
Tx Fault Assert Time	t_fault			100	μs
Tx Disable To Reset	t_reset	10			μs
LOS Assert Time	t_loss_on			100	μs
LOS De-assert Time	t_loss_off			100	μs
Serial ID Clock Rate	f_serial_clock			400	KHz
MOD_DEF (0:2)-High	V _H	2		Vcc	V
MOD_DEF (0:2)-Low	VL			0.8	V


Digital Diagnostic Memory Map


The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2-wire serial interface (SCL, SDA).

The diagnostic information with internal calibration or external calibration all are implemented, including received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring.

The digital diagnostic memory map specific data field defines as following.



Pin Definitions

Pin Diagram

Pin Descriptions

Pin	Signal Name	Description	Plug Seq.	Notes
1	V _{EET}	Transmitter Ground	1	
2	TX FAULT	Transmitter Fault Indication	3	Note 1
3	TX DISABLE	Transmitter Disable	3	Note 2
4	MOD_DEF(2)	SDA Serial Data Signal	3	Note 3
5	MOD_DEF(1)	SCL Serial Clock Signal	3	Note 3
6	MOD_DEF(0)	TTL Low	3	Note 3
7	Rate Select	Not Connected	3	
8	LOS	Loss of Signal	3	Note 4
9	VEER	Receiver ground	1	
10	V _{EER}	Receiver ground	1	
11	V _{EER}	Receiver ground	1	
12	RD-	Inv. Received Data Out	3	Note 5
13	RD+	Received Data Out	3	Note 5
14	V _{EER}	Receiver ground	1	
15	V _{CCR}	Receiver Power Supply	2	
16	V _{CCT}	Transmitter Power Supply	2	
17	VEET	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 6
19	TD-	Inv. Transmit Data In	3	Note 6
20	VEET	Transmitter Ground	1	

Notes:

Plug Seq.: Pin engagement sequence during hot plugging.

- 1) TX Fault is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; Logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.
- 2) TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7k\sim10k\Omega$ resistor. Its states are:

Low (0 to 0.8V): Transmitter on
 (>0.8V, < 2.0V): Undefined

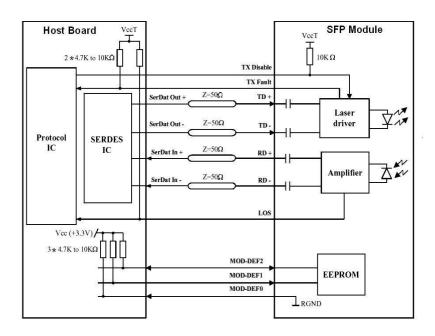
High (2.0 to 3.465V): Transmitter Disabled
 Open: Transmitter Disabled

3) Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a $4.7k\sim10k\Omega$ resistor on the host board. The pull-up voltage shall be VccT or VccR.

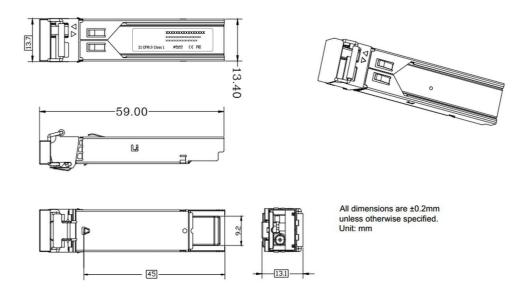
Mod-Def 0 is grounded by the module to indicate that the module is present

Mod-Def 1 is the clock line of two wire serial interface for serial ID

Mod-Def 2 is the data line of two wire serial interface for serial ID


- 4) LOS is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor. Pull up voltage between 2.0V and Vcc+0.3V. Logic 1 indicates loss of signal; Logic 0 indicates normal operation. In the low state, the output will be pulled to less than 0.8V.
- 5) RD-/+: These are the differential receiver outputs. They are internally AC-coupled 100 differential lines which should be

terminated with 100Ω (differential) at the user SERDES.


6) TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differential lines with 100Ω differential termination inside the module.

Recommended Interface Circuit

Package Outline

Dimensions are in millimeters. All dimensions are ±0.2mm unless otherwise specified. (Unit: mm)

Regulatory Compliance

Feature	Test	Method
Electrostatic Discharge (ESD) to the Electrical Pins	MIL-STD-883E Method 3015.7	Class 1(>1000V for SFI pins, >2000V for other pins.)
Electrostatic Discharge (ESD) Immunity	IEC61000-4-2	Class 2(>4.0kV)
Electromagnetic Interference (EMI)	CISPR22 ITE Class B FCC Class B CENELEC EN55022 VCCI Class 1	Comply with standard
Immunity	IEC61000-4-3	Comply with standard
Eye Safety	FDA 21CFR 1040.10 and 1040.11 EN (IEC) 60825-1,2	Compatible with Class I laser Product

Ordering information

	Specifications									
Part. No	Pack	Rate	Tx (nm)	Po	RX	Sen	Temp	Reach	DDM	
		(Gbps)	(nm)	(dBm)		(dBm)	(℃)	(km)		
SFPL-35B1-20	SFP	1.25	1310	-9~-3	PIN	<-20	0~70	20	Υ	
SFPL-53D1-20	SFP	1.25	1550	-9~-3	PIN	<-20	0~70	20	Y	
SFPL-35B1-20I	SFP	1.25	1310	-9~-3	PIN	<-20	-40~85	20	Y	
SFPL-53D1-20I	SFP	1.25	1550	-9~-3	PIN	<-20	-40~85	20	Υ	